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The Secrets of Speech The Secrets of Speech 
Synthesis: From Military Synthesis: From Military 
Communications to Communications to 
Apple’s SiriApple’s Siri
Mark Allen-Piccolo

Writer’s Comment: In winter 2019 I was enrolled in a course 
on Digital Signal Processing in the Department of Electrical and 
Computer Engineering. For the course project, I developed a voice 
synthesizer app that allowed a user to select a prerecorded voice or 
record their own voice, spoken or sung; the app would then produce a 
synthesized version of that same phrase. After the project was finished, 
I thought I would gain a better understanding of what I had created 
if I tried to explain it in words. 
      The subject of vocal synthesis seemed an intriguing topic to write 
about for my translating knowledge essay for UWP 101 with the 
help of Professor MacArthur. Engineering is often difficult to dis-
cuss because it requires a background in math and other specialized 
knowledge. When I enter the workforce, however, I imagine I will 
need to discuss this technical work with non-engineers. Writing this 
essay gave me the chance to practice this essential skill. I hope that by 
giving ample definitions and illustrative examples, the essay will be 
accessible to an average reader. I also hope to demystify some of the 
technology that has become ubiquitous in today’s society.

Instructor’s Comment: One reason I love teaching UWP 101 is the 
variety of majors. Mark earned a B.A. in music from UC Berkeley, 
worked for a while, and enrolled at UC Davis to earn a B.S. in 
electrical engineering. When he chose early vocoders as the topic for 
his Translating Knowledge essay, I was mostly delighted. This topic 
connects to my own interdisciplinary research—the study of perfor-
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mative speech, which involves sound visualization and quantitative 
methods—and I thought other readers would also be interested, given 
the increasing ubiquity of virtual agents like Alexa and Siri. But I 
also know how dauntingly complex speech production and audio sig-
nal analysis are, and worried a bit that Mark would have too much 
technical information to translate. I needn’t have worried. Discussing 
his strong draft in office hours, I encouraged him to use some visual-
ization and add more examples of things Siri might say to clarify the 
process of speech synthesis. The result is a compelling explanation of 
both the human voice and the basis for a technology we rely on more 
and more. 

—Marit J. MacArthur, University Writing Program

Have you ever asked Apple’s virtual assistant Siri who she is? She 
will respond by saying, “I’m just a humble virtual assistant.” 
We know that she is artificial intelligence developed by the SRI 

International Artificial Intelligence Center and Nuance Communications, 
and that her voice is based on the actor Susan Bennett. She communicates 
using speech synthesis, a voice made from software engines that work 
to create the myriad words and phrases that she speaks. Siri has two 
main engines: prosody selection (the rhythmic and intonational aspect 
of speech) and unit selection (look-up table for phonemes, the distinct 
sounds in speech). Siri is a fairly believable artificial intelligence, the 
result of years of research and development. Her speech engine is quite 
sophisticated, but how did we get to this point? What are the elements 
that make up speech, and how could we possibly recreate such a complex 
mechanism as human speech? How can we teach artificial intelligence 
to recognize and interpret phrases, or answer questions? To answer these 
questions, we can start at the beginning, when speech synthesis was a 
rudimentary technology called an LPC vocoder (linear predictive coding 
vocoder).

The LPC vocoder was invented at Bell Laboratories in 1966. It was 
designed to be used in military applications as a means of communication. 
Imagine a voice command sent from base to an airplane, or vice versa. 
At that time, computing power was limited and there was a need to 
constrain the amount of data used in communication. Engineers thought 
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that if they could strip a human voice down to some essential elements, 
they could reduce the computation needed while still keeping the speech 
understandable. After all, if simply relaying information, there is no need 
for a signal to be high fidelity. What matters is that the command is 
intelligible.

The human voice is timbrally rich, containing frequencies ranging 
from one hundred hertz up to fifteen kilohertz (the hertz is the unit 
of measurement for frequency, or cycles per second—low sounds 
have a low hertz value—like 120 Hz—while high sounds will have 
a high hertz value—like 10 kHz). Our voice is made up of many 
overlapping frequencies, and the lowest of these frequencies—which is 
the most prominent and characterizes our speaking register—is called 
the fundamental frequency, produced by the vibration of the vocal 
cords. Fricative sounds—like “s”, “th”, “f ”, “k”—are made up of high 
frequencies. Engineers found that for a voice to be intelligible, it need 
only contain the fundamental and fricatives. In speech synthesis, these 
two components are called voiced (essentially vowels) and unvoiced 
(essentially consonants). In order to make an intelligible synthesizer, a 
voice can be limited to these two components: voiced and unvoiced. 
To better understand how to recreate a synthesized human voice, the 
engineers at Bell began by studying the physiological process of human 
speech.

The mechanism that produces human speech is complex but it can 
be simplified into some basic components. The trachea, or windpipe, 
carries air from our lungs to the larynx, or voice box, which holds the 
vocal cords (Figure 1). Air is trapped behind the closed vocal cords, 
building pressure. The chords open and then close again allowing puffs 
of air to pass. By unconsciously controlling the shape and tautness of the 
vocal cords, we can control pitch. The more the vocal cords vibrate—the 
higher the frequency of vibration—the higher the pitch. By pushing more 
air from our lungs, we can control loudness. The oscillations produced by 
the vocal cords travel into the mouth, nose cavities (sinuous), and chest 
where they resonate and are projected. With subtle changes to the shape 
of our mouth and position of our tongue (these shapes are also called 
formants), we can create distinct sounds, which are called phonemes. 
(Every word in any language is characterized by phonemes—it’s like a 
universal standard for pronunciation).

Engineers set out to reproduce this physiological process by first 
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creating a mathematical 
model. The windpipe 
and voice box (trachea 
and larynx) were modeled 
by a pulse generator, 
an electrical device that 
produces an electric 
pulse that occurs at 
regular intervals. It is 
analogous to the puff of 
air that is produced by 
the vocal cords. Like the 
vocal cords, the pulse 
generator is responsible 

for controlling pitch. It does this by varying frequency or periodicity, 
the time rate between pulses (again, measured as hertz). Increasing the 
amplitude of the pulse will make the sound louder. The formants (the 
shape the mouth makes) are modelled by a frequency selective filter, 
which allows some frequencies to pass while attenuating others. With 
this simplified mathematical model, the engineers at Bell Labs set out to 
construct the system that would reproduce this physiology.

The LPC vocoder is divided into two sections: analysis and synthesis. 
The analysis stage is where a human voice—usually pre-recorded and 
stored as data—is analyzed for pitch, loudness, formants, and the voiced/
unvoiced decision (discussed below). Each of these components can be 
measured and stored as data. This data is then used in the synthesis stage 
to recreate a voice.

In the analysis stage, the recorded voice is separated into several 
categories that, as a whole, define the character of a voice: pitch, 
loudness, voiced/unvoiced, and formants. Each one of these components 
is analyzed using a unique technique. For example, cepstrum analysis is a 
series of mathematical steps that, when applied to a voice recording, will 
identify the pitch. The voiced/unvoiced decision uses a technique called 
zero-crossing that will determine whether the speaker uses a voiced or 
unvoiced sound. With the overview in mind, it can be enlightening to 
dive deeper into the specifics of each analysis technique.

There are currently many techniques that will determine pitch, 

Figure 1. Vocal Apparatus. (Lathi and Ding, 
Modern Digital and Analog Communication 
Systems, Oxford UP; 5th edition, Feb. 9, 2018.)
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but the first—called cepstrum analysis—was developed in 1967 by 
Michael Noll at Bell Laboratories in New York. Cepstrum analysis is a 
good illustration of how engineers use the frequency domain to reveal 
otherwise obscure results. The frequency domain is a measurement 
of a particular frequency or group of frequencies with respect to that 
frequency’s (or several frequencies’) strength. The voice is made of myriad 
overlapping frequencies. By looking at the voice in the frequency domain, 
we can see the strength of every frequency all on one graph (Figure 2). 
(Another useful way to measure signals is by using a spectrograph, which 
combines signal strength, frequency, and time).

In speech, the vocal parameters—formants, pitch, loudness—are 

constantly shifting as we utter a sentence. For example, when Siri says, 
“I’m just a humble virtual assistant,” the section “I’m just a humble             
. . .” takes about half a second to complete, but the pitch, formants, 
and loudness change quite drastically in that time. These changes in time 
require that speech analysis measures these parameters as time progresses. 
To do this, engineers use what is called a Short Time Fourier Transform 
(STFT), which is a frequency domain analysis of a 10-millisecond slice 
of time. In his seminal paper, “Cepstrum Pitch Determination” (1967), 
author Michael Noll discusses how one can use the STFT to analyze the 
logarithm of the frequency spectrum to garner pertinent information: 
“The effect of the vocal tract is to produce a low frequency ripple in the 
logarithmic spectrum, while the periodicity [recurring at regular intervals] 

Figure 2. Measuring sound pressure level of loudspeakers (BBC Academy).



Prized Writing 2018-2019

46

of the vocal source manifests itself as a high frequency ripple in the 
logarithmic spectrum.” He goes on pointing out that “. . . the spectrum 
of the logarithmic power spectrum has a sharp peak corresponding to the 
high frequency source ripples in the logarithmic spectrum and a broader 
peak corresponding to the lower frequency formant structure in the 
logarithmic spectrum.” In other words, using the logarithmic frequency 
domain, we can detect the fundamental frequency of any recorded 
speech; i.e., we can determine the pitch (Figure 3).

Analyzing the zero crossing is a technique that can determine when 
there is a voiced or unvoiced sound in the recording. A single frequency 

can be represented as a sine wave, and viewing it as such can illustrate the 
zero-crossing (Figure 4). Every time a signal changes directions, it crosses 
the “zero” axis. A zero-crossing analysis essentially counts how many 
times the signal crosses the “zero” in a specific amount of time. A high 
number of crossings corresponds to an unvoiced sound, i.e. a fricative. 
A low number of crossings corresponds to a voiced sound, i.e. pitched 
vowels. When Siri says “I’m just a humble virtual assistant,” the section 
“I’m ju—” will show up as a lower rate of zero crossings; whereas, “-st” 
(of “just”) will show up as a higher rate of zero-crossings. The next part of 
the phrase “. . . a humble virtual a—” will again have a lower number of 
zero-crossings, while “—ssist—” will have a higher number; and so on.

Each analysis technique produces a set of values, called coefficients, 
that are used to weight the prominence of vocal parameters: pitch, 
loudness, formants, and voiced/unvoiced decision. These coefficients are 
then passed to the synthesis stage where they are used to resynthesize 

Figure 3. Pitch Contour in Drift (http://drift3.lowerquality.com/)



47

the voice. For example, when Siri 
says, “I’m just a humble virtual 
assistant,” the contraction “I’m” 
changes in pitch from about 300 
hertz to 400 hertz and then back 
down again (Figure 3). Each 
incremental change of pitch in 
this word is represented as a value 
between 0 and 1. When the pitch 
reaches 400 hertz it will acquire a 
high value, like 0.89. When the 
pitch decreases back to 300 hertz, 
it will acquire a lower value like 
0.70. These values can then be used in the synthesis stage to reconstruct 
the pitch. The voiced/unvoiced decision is stored as a binary; a “0” for 
voiced and “1” for unvoiced. When these values are passed to the synthesis 
stage, they are used like a switch that can either select a voiced sound or 
the unvoiced sound. With each component of the voice characterized by 
a set of values, we can synthesize the voice from scratch.

The unvoiced sounds (the fricatives) are reproduced by a burst of 
white noise. White noise is the combination of all frequencies sounding 
simultaneously. White noise is equal energy at every frequency. To the 
human ear, it is not discernable as a pitch; it just sounds like static (the 
sound of a terrestrial radio between stations). White noise reproduces the 
fricative sounds particularly well. 

The voiced sounds, on the other hand, are produced by a pulse 
generator. The coefficients that were produced when pitch, loudness, and 
formants were analyzed are combined with a pulse train (a series of pulses 
emanating from the pulse generator that occur at regular intervals—for 
example 16,000 pulses per second). Together, they regenerate the pitch, 
loudness, and formants of the original recording.

While these early synthesized voices were intelligible, they would 
never be mistaken for a human speaking. They are low-fidelity. Since 
the time the LPC vocoder was first created, technology has improved 
drastically. Initially, low computing power limited the fidelity of the 
synthesized voice. Since then, advancements in data storage and processing 
have allowed for refinement of the vocoder process, leading to higher 
fidelity and, ultimately, a more believable voice, like Siri’s. The original 
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Figure 4. Zero Crossings in Matlab (cre-
ated by the author).



Prized Writing 2018-2019

48

technologies are still used, however, but researchers found that vocoders 
work best when the best elements of each technique are cherry-picked 
and incorporated with newer technologies. In a paper published in 2018, 
researchers at the Department of Signal Processing and Acoustics at Aalto 
University tested various combinations of vocoder techniques, analyzing 
which combinations produced the best results. The authors found that 
“the choice of the voice has a profound impact on the overall quality of 
the vocoder-generated voice, and the best vocoder for each voice can vary 
case by case. . . . [In] future research, the integration of these approaches 
could be beneficial.”

Another study published in 2015, “Incremental Syllable-Context 
Phonetic Vocoding” explores novel approaches to the ways in which 
humans understand words and phrases. The authors theorized that 
“Humans . . . ‘encode’ speech [in] real-time and in an incremental 
fashion, i.e., encoded speech depends only on current and past/already-
uttered speech and not future/to-be-uttered speech (similar to causality 
in digital signal processing theory).” They were theorizing that the 
cognitive process of speech is similar to attributes of DSP (digital signal 
processing). Digital signal processing is a subfield in engineering and 
computer science devoted to processing digital information. A digital 
signal is essentially a signal that has been sampled and stored in computer 
memory. Cernak is explaining how certain properties in digital signal 
processing, like causality, are very similar to the way that the human 
brain recognizes meaning in words. Causality characterizes a type of 
signal whose information depends solely on current or past information, 
not future information. For example, when you ask Siri, “Who are you?”, 
her speech recognition software can only process “Who,” then “Who 
are,” then “Who are you?” She has no idea what word will come after 
“Who” until it happens. This is similar to humans (although, truth be 
told, humans do have the ability to anticipate what might be said before 
it is said). Since the 1960s when the vocoder was first developed, digital 
technology has unlocked otherwise impossible analysis tools. Harnessing 
advancements like modern day computing power, memory, and 
sophisticated digital systems has brought new possibilities for vocoders. 
Incorporating these ideas into technology is now possible with neural 
networks and machine learning.

The advent of machine learning, under the umbrella of artificial 
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intelligence, is the new frontier for vocoder designs. It is what makes Siri 
work. Machine learning is a process where a machine is fed data, and 
through feedback by the designer, the machine can be trained to listen to 
a command and carry out a specific task. For example, SIRI can learn to 
process the phrase “What is the weather today?” as a series of sounds that, 
when combined, instruct the program to search for the daily weather 
conditions. This process is often carried out using a neural network. A 
neural network, named such because it is reminiscent of the network 
of human synapses, is a complex array of paths that allow sophisticated 
processing of various system inputs. The system is programmed (either 
by a programmer or through machine learning) to assign the input a 
fractional number between zero and one. This number indicates how 
much the input is similar to a particular desired output. For example, 
the phrase “Siri, what is the weather today?” may score a 0.99 towards 
the action of obtaining daily weather conditions. On the other hand, 
the command “Siri, play the band Weather Report” may score 0.6. The 
program will ultimately obtain the weather because it has the higher 
score of 0.99. In other words, a neural network uses weighting to carry 
out some task.

In the 2018 paper “Speech Sound Classification and Estimation of 
Optimal Order of LPC Using Neural Networks,” the authors explain how 
the advent of neural networks offer exciting possibilities with vocoders: 
“Formulating an adequate mathematical expression to closely estimate 
the optimal order hence poses a huge challenge. Neural networks offer 
a solution to this problem. Since the LPC order has high correlation 
to the formants . . . using the spectral data would be adequate to train 
the network to predict the LPC order with high accuracy.” The order 
corresponds to how much bandwidth—or frequency range—the vocoder 
has; a higher order is beneficial because the vocoder will be higher 
fidelity, but at the cost of higher computational power. Thus, they posit 
that neural networks can be trained to find an optimal order, striking a 
balance of fidelity and computational power.

Using neural networks and machine learning to refine speech 
synthesis has paved the way for many useful tools, like Siri. This 
technology is still young, and will only get better as computer scientists, 
linguists, and neuroscientists come up with novel approaches. Although 
Siri’s speech is quite believable, there are times when she still stumbles 
on either pronunciation or speech recognition. These are the anomalies 
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that remind us that, yes, she still has a way to go. For example, there 
is a lag between when you ask Siri a question and the time it takes her 
to respond. Although short, the pause gives away that she is processing 
data in her speech recognition engine. As algorithms get faster, perhaps 
with the aid of sophisticated neural networks, this delay could become 
non-existent. Another problem is that Siri answers queries in a cycle of 
phrases: if you ask her a question, she will answer; if you ask her the 
same question, she will provide a different answer; if you ask her again, 
she may repeat the first answer again. In other words, she has limited 
available responses to the same question. However, with subtle shifts to 
her pitch, she could, for example, start to express frustration that we keep 
asking her the same question. Whether that is something customers want 
in a virtual assistant is a different matter.
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