
180

SETI@HOME:
A Parallel Programming
Paradigm

 is article was originally submitted as our í nal research
report in Professor Norman Matloff ’s ECS 158 course, “Programming on
Parallel Architectures.”  is assignment called for the analysis of a real-
world application in one of three parallel programming architectures we
studied, including technical background on the nature of the problem and
the signií cance of parallel processing in its solution, recommendations for
potential improvements, and equivalent implementations in alternate
architectures. We chose the SETI@Home platform and its utilization of
NVIDIA’s CUDA GPU language because of their open-source communities
and the transparency of the source code as compared to proprietary projects.
We were excited about the idea of a network of individuals working together
to overcome the obstacles associated with a vast amount of centralized
computation, and the power of collaborative eff orts as such. We would like to
thank Dr. Norm Matloff for his support and iní nite wisdom in the subject
matter and for inspiring us to really immerse ourselves in the world of parallel
programming.

—Maximilian Becker and Gautam Peri

Countless undergraduates seeking my approval of
their course plans dismissively speak of General Education courses as “just
a GE course,” treating any non-tech course as irrelevant.  us this gem of
a term paper by Maxx Becker and Gautam Peri comes as an affi rmation of
the university’s goal to produce broadly-educated graduates.  e assignment
called for an analysis of a real-world application of our course’s material on
parallel programming.  e students would report on the selected application,
explaining the nature of the problem, the type of computation it required,
and the parallel programming issues involved: why was parallel computation
needed, and what diffi culties arose in parallelizing it? Maxx and Gautam
did a bang-up job here, explaining the issues clearly, with insight and in a
highly engaging manner. I wish to emphasize that not only was theirs the best
written report in the class, it was also the top in terms of technical content.

—Norman Matloff , Department of Computer Science

181

SETI@HOME

Introduction

R
     have made it
technically feasible to answer the question that has captured
humanity’s imagination since we ë rst looked to the skies: are we

alone? Since 1985, the nonproë t research organization Search for Extra-
Terrestrial Intelligence (SETI) has pooled the resources and brainpower
of scientists around the globe to answer this question. With funding and
sponsorship from large corporations, scientië c foundations, and United
States government agencies, SETI employees and volunteers have devel-
oped projects to analyze cosmic electromagnetic signals in hopes of ë nd-
ing transmissions from an intelligent alien civilization. One experiment,
SETI@Home, has allowed computer clients to donate unused CPU cycles
to aid in this analysis. Touted as the largest distributed computation proj-
ect in existence, SETI@Home spawned the Berkeley Open Infrastructure
for Network Computing (BOINC), a platform that is now widely used
for many other scientië c projects reliant on volunteer resources. Clients
run BOINC and the SETI@Home project in the background of their
normal processing activities and during idle processor time with the
SETI@Home screensaver application.  is program allows full utiliza-
tion of the clients’ computational resources without ever inconvenienc-
ing them. With SETI@Home, individuals have the satisfaction of aiding
in the quest for interstellar companionship while participating in one of
the largest parallel computation projects ever designed.

Background/Overview

I  ǬǪ ,  in radio technology gave scientists
the chance to probe for electromagnetic signals that would further our
understanding of the universe. In particular, the Arecibo radio telescope
in Puerto Rico was built in 1963 as a cooperative eff ort between Cornell
University and the National Science Foundation. It was designed to
study these signals and still stands as the largest radio telescope on Earth.
SETI@Home utilizes a fraction of the Arecibo telescope’s observational
time, passively gathering data while the telescope is not being used for
other scientië c endeavors.

 e scientists at SETI gather and analyze data based on a set of
assumptions and restrictions. For instance, it is more feasible to send an
intergalactic message over a narrow frequency band. Considering power
constraints and noise issues, SETI scientists postulate that an intelligent

182

Prized Writing 2009–2010

species would deliberately concentrate their signal.  is means the data
can be quantized over specië c frequency ranges and analyzed for signal
strength. To account for terrestrial electromagnetic signals, SETI further
distinguishes meaningful signals as those that rise and fall in intensity
over a 12-second period, or the time it takes for the telescope to scan
a portion of the sky. SETI must also accommodate signal variability in
various forms, including frequency changes due to the Doppler shift and
digitized, or “chirped,” data.

Over the course of two years, the telescope scans its visible portion
of the sky three times, generating massive amounts of electromagnetic
data.  is data is stored on 35 gigabyte tapes, each holding 15.5 hours of
data using 2-bit complex samples.  ese tapes are then sent to Berkeley,
where the data is split into ë xed-size work-units and sent to SETI@
Home users over the Internet.

Because the data is ë nite and can be quantized, distributing it to cli-
ents is simple.  e information analyzed from the telescope is centered at
the 1420 MHz hydrogen band, within a frequency range that is banned
for use by human transmissions.  e band collected is 2.5 MHz wide,
which is enough to accommodate for the relative Doppler shift of inter-
galactic bodies.  is band is broken up into 256 chunks, each around 10
kHz wide, and SETI@Home clients are sent 107 seconds of this data,
called a work-unit. Paired with additional protocol data, each work-unit
ends up being 340 kilobytes. Idle machines running the SETI@Home
software are sent work-units from the Berkeley servers to perform the
necessary analyses.

Why the need for parallel processing?

T SETI@H  involves real-time analysis of “mountains of
data.” To use an old analogy, it would be diffi cult to ë nd a needle in a
haystack if you were working alone. However, thousands of people going
through the same haystack are more likely to ë nd the wayward needle.
Because of the vast diversity and inherent weakness of potential signals,
SETI requires massive amounts of computational resources to accom-
plish the task of ë nding an extraterrestrial transmission. For this reason,
they rely on distributed computation. As described above, the raw data is
easily quantized according to the necessary restrictions, and the problem
becomes embarrassingly parallel.1 Clients are free from communicating

1. “In parallel computing, an embarrassingly parallel workload (or

183

SETI@HOME

with each other, only sending and receiving data from the server when
necessary. Redundancy can be implemented to account for malicious or
erroneous client results, and the trick lies in systematically gathering and
categorizing the data after it has been analyzed.

 e SETI@Home project is inherently parallel in nature and
has adapted to changes in consumer computing potential. Users with
NVIDIA GPUs can take advantage of their processing power with a
recent version that utilizes CUDA to improve computational perfor-
mance up to 10 times that of a standard CPU.  e following analysis will
focus on SETI@Home’s use of the CUDA language to increase parallel-
ism, as well as the potential problems in their approach.

How the problem is parallelized

A  , SETI  a frequency range of 2.5 MHz.
SETI@Home begins by splitting up that band into 256 manageable
chunks of 9766 Hz (or approximately 10 KHz), each of which amounts
to about 107 seconds of data. Sampling at the Nyquist rate of 20 kbps,
each chunk occupies about 0.25 megabytes of memory. Each of these
chunks is called a “work-unit” that is then sent to the participating users
for processing.  is work-unit contains the actual data and information
about the necessary processing to be performed. Each client will receive
about 340 kilobytes of data in total for each work-unit they analyze. As
the Arecibo telescope remains ë xed, the time it takes for a target to cross
the beam is about 12 seconds.  us, the expected signal that the program
is looking for is a Gaussian that peaks around the 6-second mark, about
halfway through the process.  e work-units also overlap by 20 to 30
seconds to accommodate a 12-second margin that is in the transition.

After receiving a work-unit, a client performs various tests on the
data sample to ë nd any possible signals that ë t SETI’s search criteria of
either continuous or discrete (pulsed) Gaussians (Figures a and b). As
any potential signals would be transmitted across vast distances, they are
subject to the Doppler eff ect, or “chirping” as SETI calls it (Figures c and
d).  e program begins by “de-chirping” the data, negating the skew of

embarrassingly parallel problem) is one for which little or no eff ort is required
to separate the problem into a number of parallel tasks.  is is often the case
where there exists no dependency (or communication) between those parallel
tasks” (Wikipedia, s.v. “Embarrassingly parallel,” http://en.wikipedia.org/wiki/
Embarrassingly_parallel#cite_note-dbpp-0).

184

Prized Writing 2009–2010

the signal caused by the Doppler eff ect. SETI describes this process as
follows:

At the ë nest resolution, we have to do this a total of 20,000 times, from
-10 Hz/sec to +10 Hz/sec in steps of .002 Hz/sec. At each chirp-rate, the
107 seconds of data is de-chirped and then divided into 8 blocks of 13.375
seconds each. Each 13.375 second block is then examined with a band-
width of .07 Hz for peaks.2

 ese de-chirping tests are then performed in the range of ±10 Hz/
sec to ±50 Hz/sec to ensure a clean signal. Once the data has been de-

2. Hipschman R, 2003, http://seticlassic.ssl.berkeley.edu/about_seti_at_
home_4.html

(a) Continuous Gaussian Signal (b) Discrete Gaussian Signal

(c) Continuous Chirped Gaussian Signal (d) Discrete Chirped Gaussian Signal

Figure 1: Types of signals the program looks for

Images courtesy Dr. David Anderson, SETI @ Home website:
http://seticlassic.ssl.berkeley.edu/about_seti/about_seti_at_home_4.html

185

SETI@HOME

chirped, similar tests are conducted at 0.15, 0.3, 0.6, 1.2, 2.5, 5, 10, 20,
40, 75, 150, 300, 600, and 1200 Hz.

SETI uses two algorithms to ë nd pulsed signals in the data.  e
ë rst, called the triplet test, looks for two pulses that are above a threshold
value, and seeks a similar pulse situated exactly in between the two.  e
second, called the fast folding algorithm, is a rather clever solution for
ë nding pulses. As these pulses may be very weak, SETI breaks up the data
into chunks that are analyzed with respect to time and power. Given the
right period in a time-slice, if all of the slices are summed, then the result-
ing summed power will grow and be distinct from the background noise.

Due to the natural independence of frequencies in the electromag-
netic spectrum, the frequency ranges in a certain band are mutually exclu-
sive when split into chunks. Considering the details of the calculations
that each client performs (10 to 50 hours of work, as SETI estimates), it is
apparent that a signië cant amount of parallelism can be achieved within
work-units. De-chirping the data, processing Fast Fourier Transform
(FFT) calculations, ë tting Gaussians to the selected data, and ë nding
pulses all yield opportunities for parallelizing computation. Indeed, the
CUDA version of SETI@Home takes advantage of these opportunities,
though there are a few potential improvements to be considered.

Problems and Solutions

T    with SETI’s implementation of paralleliz-
ing for the CUDA architecture is in their utilization of the entirety of the
GPU’s resources. As shown below, all CUDA kernel calls are made with
the conë guration of 64 threads per block in one dimension. Similarly,
the grid structure utilizes a one-dimensional block arrangement.  is
arrangement of assigning 64 threads to a block indicates a close tie with
the structure of CUDA’s execution of 32 threads per warp. It can be seen
that the grid structure is conë gured for a set of data points to be assigned
to a block, where two warps work on the sampled set:

dim3 block(64, 1, 1);

dim3 grid((cudaAcc_NumDataPoints + block.x - 1) / block.x, 1, 1);

Each thread in the de-chirping algorithm is used to analyze a time slice
to ë gure out the chirp angle with respect to that slice.  ere is a potential
for bank conì icts in this implementation, as each 13.375-second block
is accessed by many threads in the process of computing chirp angles.

186

Prized Writing 2009–2010

Such an instance is seen in the following code, where the global variable
chirp_rate is accessed by every thread performing this computation:

__global__ void cudaAcc_CalcChirpData_kernel(int NumDataPoints,
fl oat chirp_rate, fl oat recip_sample_rate, fl oat2* cx_DataArray,
fl oat2* cx_ChirpDataArray)
{

const int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < NumDataPoints) {

fl oat2 cx = cx_DataArray[i];
fl oat c, d, real, imag;
fl oat time= i * recip_sample_rate;
// since ang is getting moded by 2pi, we calculate “ang mod 2pi”
// before the call to sincos() inorder to reduce roundoff error.
// (Bug submitted by Tetsuji “Maverick” Rai)
fl oat ang = chirp_rate*time*time;

However, the issue of bank conì icts and how to avoid them are
already diagnosed by the developers at SETI in other portions of the
computations.  e programmers have implemented an algorithm that
does the task of scanning the data points in O(lg(n)) with an option to
explicitly avoid all bank conì icts.3  e source code proves to be incred-
ibly complex, utilizing advanced CUDA techniques to achieve superior
parallelism.

Recommendations

O      of the algorithms used to analyze
data and ë nd that some computations could potentially utilize more of
the GPU resources. Considering the de-chirping algorithm, we ë nd that
it is broken into three distinct layers of analysis: chirp-rate, granularity,
and bandwidth.  ese can easily translate into the three dimensions of a
block, with one thread per calculation. Overall, there are 200 billion de-
chirping calculations to be performed in a work-unit, and further divid-
ing these calculations among blocks could maximize the GPU resource
utilization and effi ciency. Expanding block usage into two dimensions,
we could assign multiple time-slices to individual block rows to analyze
time-slices concurrently.

Another potential improvement is in the utilization of shared mem-
ory. Use of shared memory is rare, and we observed cases (such as the
de-chirping computations) in which it might be appropriate. In the de-

3See the comments in the source code at: https://setisvn.ssl.berkeley.edu/svn/
branches/seti_cuda/seti_boinc/client/cuda/cudaAcc_scanLargeArray_kernel.cu

187

SETI@HOME

chirping code, calculations access a global matrix in each thread, poten-
tially causing a signië cant slowdown. With the aforementioned block
conë guration, we could utilize shared memory in our 3D structure to
perform concurrent calculations by copying necessary portions of the
global matrix into shared memory.  reads would then concurrently
work on diff erent chirp-rates, granularities, and bandwidths on the por-
tion of the matrix that is shared. Subsequent accesses to the shared por-
tion, once it is copied from the global memory, should yield performance
boosts.

However, considering the limitations of shared memory in CUDA,
it becomes apparent why SETI developers are reluctant to use it. With
large ì oating point data sets, the overhead of moving data between global
and shared memory reduces the beneë ts of shared memory use.

Diff erent Architectures

O     of SETI@Home is that it runs on
top of BOINC, a distributed parallel platform. MPI is an alternative
distributed platform that operates in a similar fashion, but they are quite
diff erent. To begin with, the BOINC system communicates through the
HTTP protocol, as the programmers wanted to avoid conì icts with ë re-
walls or session interruptions. While they use diff erent application-layer
protocols, both paradigms use TCP to send and receive data. However,
BOINC is designed to handle dynamic nodes and distributes the data
as needed; there is no run-time accommodation for new or failed nodes
in MPI.  erefore, one could potentially use MPI with a set of clients,
developing a complex protocol to serve and collect data on a distributed
network of workstations.

In such an implementation of MPI, it is apparent that the server
(node 0) would distribute and gather the data. Node failure can be
accommodated by reassigning chunks to nodes that are currently active
and have ë nished their assigned computation. Another issue to con-
sider is the gathering and monitoring of ë nished work-units. In the
BOINC implementation, a work-unit is simply shipped out to a client
for computation, and the client then returns the results to the server.
 ere is no time limit, nor is there any issue of monitoring the “end”
of all computation. However, this is quite the opposite in MPI, as one
would need to actively monitor the current state of all data gathered to

188

Prized Writing 2009–2010

eff ectively “end” the program. Pseudocode for a potential MPI imple-
mentation is given here:

node 0:
q = current queue of work-units
n = # of active nodes
for(i = 0 to n)

send node i work-unit from q
while(q !empty || n != 0)

for(i = 0 to n)
receive node i state
if(failed)

put node i work-unit back in q
n = n - 1

if(done)
send request for data gather
receive completed work-unit data

send next item from q to node i

other nodes:
receive work-unit
during every portion of computation, send state information
send work-unit data when requested

Of course, this is a very simple illustration, and the actual MPI code
would become increasingly complex to handle failed nodes and the dis-
tribution and gathering of data.

Because of the nature of the computation required, it is much more
intuitive to imagine SETI@Home in a distributed setting than with
shared memory. With shared memory comes the necessity for massive
amounts of data storage. However, the real bottleneck is in the amount
of processing power available. In a multi-core machine, the number of
truly parallel threads is limited by the number of processors (four or
eight, given today’s technology). Instead of having hundreds of machines
performing calculations concurrently, the computations must be split
between individual CPUs, yielding much less parallelism. One can imag-
ine that with massive amounts of storage and hundreds of CPUs, SETI@
Home could be implemented in a shared memory setting. However, con-
sidering technological constraints, this problem is naturally placed in a
distributed platform.

Conclusion

T SETI@H  is an impressive parallel platform, utiliz-
ing distributed workstations and GPU architectures simultaneously to

189

SETI@HOME

perform computations on a massive and ever-increasing data set.  e
great minds at SETI have devoted much time and eff ort to creating an
effi cient and necessarily complex program, and the user community is
continuously involved in improving the platform and in aiding with
computational power.  e only limiting factor, it seems, is in the progress
of consumer technology available to process the data ever faster. With the
advent of NVIDIA’s CUDA, the SETI@Home team quickly incorpo-
rated the platform into their program. Further developments as such are
sure to engage the community in expanding the project to allow compu-
tation on the latest and fastest technologies that enter the market. Will
there be a limit to the computational power of the largest distributed
computational project in existence to date? Will this large-scale search
for extraterrestrial intelligence prove fruitful? Are we alone?  e truth is
out there

Sources

Anderson DP, Cobb J, Korpela E, Lebofsky M, Werthimer D. SETI@
home: an experiment in public-resource computing. Communications
of the ACM, 2002, 45(11): pp. 56–61. http://setiathome.berkeley.
edu/sah_papers/cacm.php

Hipschman R, How SETI@home works. SETI@home: the search
for extraterrestrial intelligence, 2003, University of California,
Berkeley. http://seticlassic.ssl.berkeley.edu/about_seti/about_seti_
at_home_1.html

Korpela E, Werthimer D, Anderson D, Cobb J, Lebofsky M. SETI@
Home—Massively distributed computing for SETI. Computing
in Science and Engineering, Jan/Feb 2001, pp. 78–83. http://
setiathome.berkeley.edu/sah_papers/CISE.pdf

SETI@HOME, 2010, University of California, Berkeley. http://
setiathome.berkeley.edu/

Source code for the SETI@Home project. set_boinc - the SETI@Home
client program, 2006. https://setisvn.ssl.berkeley.edu/svn/branches/
seti_cuda/seti_boinc/client/cuda/

